
S. Jarzabek1, Y. Xue1, N. Shaikh1, H. Zhang2 and Y. Lee2

• B-DB: a Java database engine

• 232 B-DB base source files

• Any of 38 optional features can be

implemented in B-DB variants:

IO, MemoryBudget, Evictor,

CheckSum, Statistics, …

Concept: Variation points in base files affected by features marked with feature names
Realities of managing system variants:

• The number of optional features may be huge
• Many-to-many mappings between features and base files

• Each feature affects many base files, at many variation points
• Each base file is affected by many features

• One feature depends on and interacts with other features

• Novelty: treat preprocessing representation as first-class representation, rather than add-in
to a programming language

• Merit: A tool can find feature-related code in various analysis contexts
• improved readability, maintainability and reusability;
• the solution can be applied to any preprocessing system, but:

• Limitation: Inherent complexity of a preprocessing representation remains
• we do not cure the main problem which is scattering of feature code across base files,

at multiple variation points
• Annotations, configuration parameter files, CVS/SVN have similar limitations
• Product Line approach is weak in streamlining and automating customizations
• Potential: enhance the solution into full-blown method for system variants

• Example: XVCL , XML-based Variant Configuration Language

SPC //here select features of B-DB system variant:
<set @LookAheadCache = “LookAheadCache” />
<set @CriticalEviction = “CriticalEviction” />
// features we do not need are set to null string “”
<adapt FileProcessor />
<adapt Evictor />
<adapt other B-DB files />

FileProcessor
public class FileProcessor .. {
...
<set v = @LookAheadCache/>
<select v> // variation point
<option LookAheadCache >

// LookAheadCache -related code
</select>
...

}

Evictor
public class Evictor. {
. ..
<set v= @CriticalEviction + @MemoryBudget />
<select v> // variation point

<option CriticalEviction >
// CriticalEviction -related code

<option CriticalEviction + MemoryBudget >
// Feature interaction code

</select>
…
}

1. Example: Berkeley DB (B-DB)

2. Managing B-DB variants with preprocessing

4. Easing pitfalls with feature analysis

3. Preprocessing pitfalls

Preprocessing without
some pitfalls

• Preprocessing has well-known pitfalls
• Still, it is commonly used to mange software system variants
• So here are small enhancements that make preprocessing easier to use
• Limitations of our technique and potentials for drastic improvements

The impact of features on B-DB base files:

Feature Interacting feature # points

CheckPointer Statistics 22

MemoryBudget Evictor 5

MemoryBudget CriticalEviction 1

SyncIO IO 4

EvictorDaemon Evictor 3

Feature # base files
affected

points

MemoryBudget 32 190

Evictor 12 28

CheckSum 10 28

Statistics 10 34

CheckPointer 5 34

CpByteConfig 4 6

CpTimeConfig 4 7

B-DB is a Product Line with many
B-DB system variants!

Berkeley DB B-DB
Access Methods Transactions

B+ Tree

Concurrency

Replication

Shared Memory Cache

Persistent Layer

Environment

Database

Sec. Database

Cursor

Locking
Latches

I/O Buffers

In-memory Tree

Memory Budget

Other Caches

Replication

Transactions

INCompressor

Cleaner

Checkpointer

Database Index Log File

1National University of Singapore 2Tsinghua University

Suppose we select features for a custom system or need modify a certain feature:
• Feature code spreads through base files, we need visit all the relevant variation points
• We must understand feature interactions
• Base files heavily instrumented with variation points

What we need to know to reuse/maintain features, and maintain base files?
• How is a feature Evictor implemented?
• Which base files are affected by featureEvictor and at which variation points?
• Which features affect base file FileManager?
• Which features interact with which other features, in which base files and how?

Difficult to understand base files, difficult to reuse or modify features

declare base file x; option o;
select x, o
where o.f-names = “*Evictor*” and
Contains (x,o)

declare base file x; option o;
select x, o
where o.f-names = “*” and Contains
(“Evictor”,o)

declare option o
select x.name, o
Where o.f-names = ”*CriticalEviction*MemoryBudget*”

and Contains (x,o)

Query examples:

IDE shows query results,
assists in finding and
analysis of feature code

5.Merits, Limitations and Potentials

The concept of the solution: Feature Query Language (FQL) to analyze the
preprocessing representation (analogous to program analysis), and answer above queries

	Slide Number 1

